a2 United States Patent

Gomes et al.

US009467498B2

US 9,467,498 B2
*QOct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) REMOTE AUTOMATED UPDATES FOR AN
APPLICATION

(71) Applicant: Hulu, LL.C, Santa Monica, CA (US)

(72) Inventors: Jonathan Hayden Pitcairn Gomes,
Seattle, WA (US); Daniel Honig Bear,
Seattle, WA (US); Lyudmil Vladimirov

Antonov, Seattle, WA (US)
(73)

")

Assignee: HULU, LL.C, Santa Monica, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/932,213

(22) Filed: Now. 4, 2015

Prior Publication Data

US 2016/0112494 Al Apr. 21, 2016

(65)

Related U.S. Application Data

Continuation of application No. 13/891,746, filed on
May 10, 2013, now Pat. No. 9,210,211.

Provisional application No. 61/645,163, filed on May
10, 2012.

(63)

(60)

Int. CI.
GOGF 15/16
HO4L 29/08
U.S. CL
CPC oo HO4L 67/06 (2013.01); HO4L 67/34
(2013.01)

(51)
(2006.01)
(2006.01)

(52)

100
~

Device 102

Media player
110

Application
108

Streaming
media programs

(58) Field of Classification Search
CPC ..ocvvvvvvineerccnen HO4L 67/06; HO4L 67/34

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2005/0068912 Al 3/2005 Scott et al.

2008/0098006 Al 4/2008 Pedersen et al.

2010/0162229 Al* 6/2010 Tsukcooveenens GOGF 9/44526
717/175

2011/0047620 Al 2/2011 Mahaffey et al.

2014/0156805 Al 6/2014 Gomes et al.

2014/0156833 Al 6/2014 Robinson

2015/0088982 Al 3/2015 Johnson et al.

* cited by examiner

Primary Examiner — Nicholas Taylor

Assistant Examiner — Tania Pena-Santana

(74) Attorney, Agent, or Firm — Fountainhead Law
Group P.C.

(57) ABSTRACT

In one embodiment, a method updates a media program
streaming application. The method includes running an
update application to determine when the streaming appli-
cation on the computing device needs to be updated based on
update information from a remote server and reviewing the
update information to determine when the media program
streaming application needs to be updated. When the media
program streaming application needs to be updated, the
method loads a set of updateable core files in a plurality of
updateable core files from a core memory into an application
execution memory. Then, the method sends a request for a
set of remote core files to the remote server, receives the set
of remote core files, and loads the set of remote core files
into the application execution memory. The set of update-
able core files and the set of remote core files in the
application execution memory are executed.

20 Claims, 11 Drawing Sheets

Application
down | oad

Distribution
site

Application
for approval

Service provider

104

US 9,467,498 B2

Sheet 1 of 11

Oct. 11, 2016

U.S. Patent

|eAoJdde Jol
uolieo| |ddy

I 914

o1

Jap1Aodd @91AJ8s

90T
9118

uo11nq141s1q

pBO | UMOp
uolieo| |ddy

sweJasoJd elpau
sulues.ls

801
uoljesa| |ddy

01T
lake|d eIpay

70T #91n8q

‘4f1:oo_

U.S. Patent

Oct. 11, 2016 Sheet 2 of 11

O

Device 102

Core
206

Bootstrap application
204

Native application
202

FIG. 2

US 9,467,498 B2

Application
108

US 9,467,498 B2

Sheet 3 of 11

Oct. 11, 2016

U.S. Patent

€ bl

U-%0¢ I-v0¢

e o o %
s9| 1} s9|ld 9100 |BOOT 90¢

9109 |B907 9400 |BO0T AJowsw 2409
708
0524018 |BOOT
70C

uoleo| |dde ded1siooq

70T 891n8q

US 9,467,498 B2

Sheet 4 of 11

Oct. 11, 2016

U.S. Patent

¥ OId
0=%0e 508 L
70¢ .. [-70¢ s
sofl3 s8| 14 9400 |BO07
9105 |BO0T 9109 8907
20¢
0581018 |B00T
447 908
A 10U} AJolsul 9409
¥02
Uo11e9| |dde deJls100g
y Y -
¢0l 8d1A8(Q
sl 11 so| 14
189 1By asenbes F T 9400 970We.
1564 | UBY +ouey 10) s1sanbay
A 4 Y
307 U-10¥ =70 0%
1594 1L} s9|1) 9400|® ® ®|s9|1} 8100 9109 930U9Y
. a10ueY a10UaYy
07

A9AJ3S B]0WaY

US 9,467,498 B2

Sheet 5 of 11

Oct. 11, 2016

U.S. Patent

V§S OId
u-y0¢ [-¥0¢ 0T u-0lp [-0l¥ 607
so[l) |®e®e| so|l) 2100 |£00 $9|1) 9100|® ® ®lsa| || 840D 9409
9400 |B207 9100 |BOOT 9| gealepdpn 9| geslepdn 8| geslepdy
202
9881018 |RDOT — _
909 80v
duiisi| 159 I ueul
T 90 10AU] paJols |
AJowsjy 90¢
AJouau 8407
¥0¢
uoljeol |dde deajsioog
A A _
70T 29148
sa| 14 80RO Ul 10U
1s81uel Isenbad oo a30UeY $8|1} 9402 9]0Wa
1S9 1UB JoJ sisanbay
y Y
307 U 0]7 [-¥0r %
s9[1} 9400|® ® ®|s9|1} 8409 3100 910U3)Y
1594 1UEW a10Way a10WaY

0r

J9A 188 3]0UWsY

US 9,467,498 B2

Sheet 6 of 11

Oct. 11, 2016

U.S. Patent

g6 9ld
———
ﬁm_ G 4 e 507
oft Git et ctt I# 9409
_ 7 8| qeaiepdn
it et cHt I
905 80¥
suilsi| 1sajlueu
VAN 90 10AU] pe.101s -
KJoway 90¢
/ AJowsw 38409
v0¢C
uoljeoal |dde desjsioog
/ / 20T 991A9(
9% G it ot it I# mLoommwoemz
;mz\ /uﬁ%a:
0

J9AJ8S 9]0UY

US 9,467,498 B2

Sheet 7 of 11

Oct. 11, 2016

U.S. Patent

2§ 9I4

¢S89 14

3400 3jouwaJd uollippy

CET

A Jowaw
01U| 9400 9310W8J POA18I8J 8yl pBoT

\/095

8|1] 8409 9j0WaJ SUISSIW Y] 8A1809Y

\/855

J9AJ9S 910WS4 B 0] 9|1) 9409
910WaJ SuIssiW 8yjl JO 1senbeJd B puss

\/955

ON

memHmEmLmQ aues

KJowsu

0ju| AJowsw 5400 UWOJS 8|1} 8409
9|gelepdn 3Ulpuodsallod B peoT

\/ 296

A

sa)
vas

158]luBW ayy Ul

9|1} 8400 9l0W8J B JOL SJelsWeded oulwiela(

\/755

ommul\\l‘

A

Sheet 8 of 11

U.S. Patent Oct. 11, 2016

US 9,467,498 B2

Manifest
600 ¢

covs

["core_1.js", "core_2.js",
"core_6.3s"],

< T

¢ 50676 7 1 siwe ot

1 "47b9bbeed4f8bfc@1462bb5f3b526€29",
¢ 215934

¢ "c7b5167bc3cf68603d215c05720eb87¢",
: 199848

602

: "@738ccfd58abc651f29dc80196¢eecdce”,
t 141444

: "4f6683cf9043db9e9b2dc559¢cacaebed”,
+ 213515

: "018478eb5c9e84e21cd5a801070830da",
¢ 61715

"https://domain.com/2012.4.12.846bdc8Tb6593d65",

ion®r FF we & T g

"1.0.1f682f920182bbc51062c3707231Ff768"

core_3.js", "core_4.js", "core_5.js",

"9373c245df245f318e5d68617¢ce033a0",

FIG. 6

U.S. Patent Oct. 11, 2016 Sheet 9 of 11 US 9,467,498 B2

700
T

702v/ﬁ\ Attempt to load portions of remote core file

'

704v/\ Detect the failure

Clear any remote core files that were

70@/r\ downloaded from memory
108 Load the stored manifest

l

71q/p\ Loop through the core files in the stored
manifest to confirm that each core file in the
stored manifest is included in updateable core

l

712J/\ Load updateable core into memory

'

714J/\ Verify the core has been loaded correctly

'

71§J/\ Clean up the core memory

FIG. 7

US 9,467,498 B2

Sheet 10 of 11

Oct. 11, 2016

U.S. Patent

8 DiId
U-y0¢ [-¥0¢ e
ST ¢ e s9|ld 9100 |B207
9109 |B907 9400 |B907
202
98eJ01S |B007]
447 TS
90¢
AJowsly AJowall 9109
¥0¢
uolleo| |dde de.jsioog
A
20T @91A9q
uoljewJolul Uo | SJ8A
uoljesljiiusp] 3400 9l0W3Y
A2 S—
L u-gov [-E0¥
¢08 SUOISIOA |e e e SUOISUBA
Jageueul 2109 2100
uolsJap a10Woy 970WaYy
07

J9A 189S a]0wsy

U.S. Patent Oct. 11, 2016 Sheet 11 of 11 US 9,467,498 B2

102
902\ 904\\ 906\v 908\V 910\\ 108XV/
____________________________________ |
: | | 1 | :
! |
| - 0. || BROW- || MEDIA ||Aoplicat|| !
i sys || SR || PLAYER || -ion || |

|
|

g ’
i BUS 214 |
; | | | | |
| _ |
e s | | gy [[| (o) |
| il CEIVER INPUT |
| 918 920 PORT |
:___JL __________ 1 922 |
916 925 ! !
= i

|
ROUTER/ 928 |
MODEN | i
926 (| DISPLAY UNIT | | INPUT DEVICE | |
| 928 930 |
| |
| |

US 9,467,498 B2

1
REMOTE AUTOMATED UPDATES FOR AN
APPLICATION

CROSS REFERENCE TO RELATED
APPLICATIONS

The present disclosure is a continuation of U.S. patent
application Ser. No. 13/891,746, entitled “Remote Auto-
mated Updates for an Application”, filed on May 10, 2013,
which claims priority to U.S. Provisional App. No. 61/645,
163, entitled “Remote Automated Updates™, filed May 10,
2012, the contents of both are incorporated herein by ref-
erence in their entirety.

BACKGROUND

A user may use a “living room” device, such as a game
console, set-top box, streaming media device, smartphone,
tablet, or other computing device, to access a streaming
media program service to have media programs streamed to
the device. However, before accessing the service, the user
must download an application for the streaming media
program service to the device. In some cases, a distribution
site regulates which applications a device can install. For
example, an original equipment manufacturer (OEM) that
sold the device may maintain an OEM distribution site that
aggregates available applications that a device can install. In
this case, a user of the device must go to the distribution site
to download the streaming media program application from
the streaming media program service. In another example,
the distribution site may pre-install approved applications on
the device. In either case, for the streaming media program
service to have an application pre-installed on the device or
be available for download on the distribution site, the
streaming media service has to have the application
approved by the distribution site. This usually involves an
approval process in which the streaming media program
service submits the application to the owner of the distri-
bution site for approval.

After releasing the application, the streaming media pro-
gram service may update the application very frequently to
add features, fix bugs, etc. The update experience may be
complicated and may require a user to perform many manual
steps. For example, a user may launch the streaming media
program service application to watch a media program.
However, instead of having the streaming media program
service application launched, the user encounters a modal
dialog instructing the user to manually download and rein-
stall the streaming media program service application from
a different menu. The user then has to then exit the streaming
media program service application and launch another menu
or application. For example, the other menu may be page for
the distribution site where the user can update applications.
Then, the user has to search for the streaming media
program service application in the menu, select the stream-
ing media program service application, and start the update.
The update process then downloads and reinstalls the appli-
cation. Once finished, the user can go back to the original
streaming media program service application and re-launch
the application.

SUMMARY

In one embodiment, a method updates a media program
streaming application for a media program streaming ser-
vice. The method includes running an update application to
determine when the media program streaming application on

10

15

20

25

30

35

40

45

50

55

60

65

2

the computing device needs to be updated based on update
information from a remote server and reviewing, by the
update application on the computing device, the update
information to determine when the media program stream-
ing application needs to be updated. When the media pro-
gram streaming application needs to be updated, the method
loads a set of updateable core files in a plurality of update-
able core files from a core memory of the computing device
into an application execution memory. Then, the method
sends a request for a set of remote core files to the remote
server, receives the set of remote core files from the remote
server, and loads the set of remote core files into the
application execution memory. The set of updateable core
files and the set of remote core files in the application
execution memory are executed without recompilation of
the set of updateable core files or set of remote core files to
provide the streaming media program service on the media
program streaming application.

In one embodiment, a non-transitory computer-readable
storage medium contains instructions for updating a media
program streaming application for a media program stream-
ing service. The instructions, when executed, control a
computer device to be configured for: running an update
application to determine when the media program streaming
application on the computing device needs to be updated
based on update information from a remote server; review-
ing, by the update application on the computing device, the
update information to determine when the media program
streaming application needs to be updated; when the media
program streaming application needs to be updated, per-
forming: loading, by the computing device, a set of update-
able core files in a plurality of updateable core files from a
core memory of the computing device into an application
execution memory; sending, by the computing device, a
request for a set of remote core files to the remote server;
receiving, by the computing device, the set of remote core
files from the remote server; loading, by the computing
device, the set of remote core files into the application
execution memory; and executing, by the computing device,
the set of updateable core files and the set of remote core
files in the application execution memory without recompi-
lation of the set of updateable core files or set of remote core
files to provide the streaming media program service on the
media program streaming application.

In one embodiment, a method for updating a media
program streaming application for a media program stream-
ing service includes: storing, by a computing device, a
plurality of remote core files for the media program stream-
ing application; receiving, by the computing device, a
request for update information from an update application
running on a client device, wherein the update application
uses the update information to determine when the media
program streaming application needs to be updated; receiv-
ing, by the computing device, a request for a set of remote
core files from the client device; sending, by the computing
device, the set of remote core files to the client device,
wherein: the client device loads a set of updateable core files
in a plurality of updateable core files from a core memory of
the computing device into an application execution memory;
the client device loads the set of remote core files into the
application execution memory; and the client device
executes the set of updateable core files and the set of remote
core files in the application execution memory without
recompilation of the set of updateable core files or set of
remote core files to provide the streaming media program
service on the media program streaming application.

US 9,467,498 B2

3

The following detailed description and accompanying
drawings provide a better understanding of the nature and
advantages of particular embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a simplified system for installing an
application on a device according to one embodiment.

FIG. 2 depicts an example of an application according to
one embodiment.

FIG. 3 depicts an example installation of the application
in the device according to one embodiment.

FIG. 4 depicts an example of requesting a remote core
from a remote server according to one embodiment.

FIG. 5A depicts an example of performing an update of an
updateable core according to one embodiment.

FIG. 5B shows another example of the update process
according to one embodiment.

FIG. 5C depicts a simplified flowchart of a method for
updating the application according to one embodiment.

FIG. 6 depicts an example of a manifest according to one
embodiment.

FIG. 7 depicts a simplified flowchart of a method for
loading the updateable core in the event of a failure to load
remote core according to one embodiment.

FIG. 8 depicts an example of personalization of a remote
core according to one embodiment.

FIG. 9 depicts a diagrammatic view of an example device
according to one embodiment.

DETAILED DESCRIPTION

Described herein are techniques for an automated update
system. In the following description, for purposes of expla-
nation, numerous examples and specific details are set forth
in order to provide a thorough understanding of particular
embodiments. Particular embodiments as defined by the
claims may include some or all of the features in these
examples alone or in combination with other features
described below, and may further include modifications and
equivalents of the features and concepts described herein.

FIG. 1 depicts a simplified system 100 for an application
108 on a device 102 according to one embodiment. System
100 includes a service provider 104 and a distribution site
106.

Service provider 104 may provide a service through
application 108. For example, service provider 104 provides
a media program streaming service that a user can use to
stream media programs to device 102 using application 108.
Media programs may include videos, audio files (e.g.,
music), pictures, and other audio/visual content. In one
example, users use application 108 to select videos to stream
to a media player 110 on device 102. Although the media
program streaming service is described, it will be recognized
that other services may be appreciated, such as application
108 may be providing a game, service, social networking
site, etc.

Before device 102 can access the service, device 102
needs to download application 108. In one embodiment, the
initial download of application 108 needs to be through
distribution site 106. Distribution site 106 is maintained by
an owner of distribution site 106, such as an original
equipment manufacturer (OEM) of device 102, a company
associated with a platform or operating system of device
102, or an owner of an application marketplace. Distribution
site 106 regulates which applications can be installed on
device 102. Thus, a user of device 102 cannot directly

10

20

25

30

40

45

50

55

60

4

download and install application 108 from service provider
104 without going through distribution site 106. As dis-
cussed briefly above, to release an application 108 on
distribution site 106, service provider 104 first provides
application 108 to the owner of distribution site 106. The
owner would then evaluate application 108 for approval.
Once approved, distribution site 106 may offer application
108 for download or pre-install application on device 102.

At some point, a user of device 102 may go to distribution
site 106 and request installation of application 108. In
response, distribution site 106 allows the download of
application 108 to device 102. In one example, a user of a
smartphone, game console, or other living room device may
open a page for distribution site 106 that shows various
applications that can be installed. The user may then select
the media program streaming service application from ser-
vice provider 104. Device 102 downloads the media pro-
gram streaming service application 108 and installs appli-
cation 108 on device 102. Thereafter, the user may use
application 108 to access the media program streaming
service to have media programs streamed to device 102.
Downloading application 108 from distribution site 106 may
be different from opening a web browser and downloading
a web page. Once downloaded, application 108 is stored on
device 102 for future use, and will not require the user to go
to distribution site 106 to access application 108 in the
future. In most instances, application 108 will include code
that is designed for device 102 and must be run natively. As
application 108 is run, addition code is not downloaded from
a remote source, such as a web page is not downloaded to
display additional information. The use of the native appli-
cation can be based on a need for additional functionality
that a browser on the device cannot provide, for performance
purposes, or for platforms that do not support a full web
browser experience and only support native code. Applica-
tion 108 can also be accessed offline (e.g., without a con-
nection to the Internet).

As discussed above, distribution site 106 may also pre-
install application 108 on device 102. In this case, device
102 may have the application pre-installed when a user
purchases device 102. Although the user does not have to
download application 108 from distribution site 106, service
provider 104 still has to have application 108 approved by
distribution site 106 before pre-installation.

At some point after installation on device 102, service
provider 104 updates application 108. For example, service
provider 104 may add new features, fix bugs, or enhance
features for application 108. To provide the best experience,
it is desirable that application 108 is updated with minimal
disruption to the user. Particular embodiments provide users
with a seamless update experience that may be optimized for
their device and viewing experience. For example, when the
user launches the application to view a media program, in
the background, new updates for the service are detected,
and the application seamlessly updates without requiring
user interaction. The user may proceed to a menu of appli-
cation 108 and start watching the media program without
any disruption as the application updates are loaded (e.g.,
patched) in the background upon startup. In another
example, some devices, such as smart televisions (TVs)
require a full firmware update to update any individual
application residing on the smart TV. That is, the company
that owns the smart TV pushes a major update that switches
out all of the code for the entire smart TV to update a single
application residing on the smart TV. The company performs
these updates infrequently due to the inconvenience. Thus,
particular embodiments would allow updates to be per-

US 9,467,498 B2

5

formed more frequently and service provider 104 does not
need to wait until the smart TV is updated. Also, the
company may stop supporting the smart TV as the product
ages. Then, it is possible that the company will refuse to
push any future firmware updates to the smart TV. In these
situations, particular embodiments would allow service pro-
vider 104 to continue to update application 108

Before discussing the update process, a structure of appli-
cation 108 will be described. FIG. 2 depicts an example of
application 108 according to one embodiment. In one
embodiment, application 108 includes user interface and
application logic for the media program streaming service.
As shown, application 108 includes bootstrap application
204, core 206, and native application 202. Native applica-
tion 202 may execute bootstrap application 204 and core
206. Bootstrap application 204 and core 206 may be inter-
preted applications, such as interpreted Javascript™ appli-
cations. An interpreted application does not need explicit
compilation to run. Rather, native application 202 may
execute bootstrap application 204 and core 206 directly
without compilation of bootstrap application 204 and core
206. For example, native application 202 may be a native
application running on device 102 that includes an inter-
preter, such as a Javascript™ interpreter, that can interpret
software code of bootstrap application 204 and core 206
without requiring compilation of bootstrap application 204
and core 206. Native application 202 may be coded in a
native language (e.g., C++) supported by device 102 that
enables the device to interpret and execute bootstrap appli-
cation 204 and core 206. Native application 202 also pro-
vides connections between the base application program-
ming interfaces (APIs) of device 102 and bootstrap
application 204 and core 206.

Bootstrap application 204 may be logic that is executed
every time application 108 is launched on device 102. For
example, every time a user opens application 108, bootstrap
application 204 runs. The actions of bootstrap application
204 will be described in more detail below.

Core 206 may be files that native application 202 executes
to provide the service. For example, core 206 may include
application logic for the user interface and other features that
allow a user to stream media programs to device 102. Once
bootstrap application 204 runs, native application 202
executes core 206 to provide the media program streaming
service.

Particular embodiments leverage bootstrap application
204 to provide the update experience. For example, when
the user launches application 108 to access the media
program streaming service, native application 202 first
executes bootstrap application 204. In the background, boot-
strap application 204 may detect whether new updates for
the media program streaming service are available, and
update application 108 without requiring any user interac-
tion or navigation to another menu. In one embodiment,
bootstrap application 204 may load the updates (e.g., patch)
to application 108 in the background while the user can start
streaming media programs.

In one embodiment, bootstrap application 204 may update
application 108 without requiring device 102 (or bootstrap
application 204) to contact distribution site 106. That is,
bootstrap application 204 may contact a remote server
directly to receive the updates without having to receive the
updates through distribution site 106. This allows service
provider 104 to provide updates without requiring the user
to exit application 108 and open distribution site 106. This
provides a better user experience as the user does not have
to continually access distribution site 106 to update appli-

25

35

40

45

50

6

cation 108. Also, service provider 104 can quickly deliver
new features on application 108, fine-tune application 108,
reduce loading time of application 108, optimize application
108 for different user profiles, immediately fix problems that
are discovered for application 108, and reduce support costs
for new updates.

To allow application 108 to automatically update without
going through distribution site 106, bootstrap application
204 is included in the application that is initially provided to
distribution site 106, and bootstrap application 204 includes
logic configured to access a remote server to detect updates
directly without going through distribution site 106. Before
describing the update process, a state of device 102 upon
initial installation will be described. FIG. 3 depicts an
example installation of application 108 in device 102
according to one embodiment. As shown, bootstrap appli-
cation 204 has been installed on device 102. Additionally,
local storage 302 includes a local core 303 that includes
local core files 304-1-304-z. Local core files 304-1-304-n
may be files for the core of application 108 that were
downloaded from distribution site 106. Distribution site 106
has approved native application 202, bootstrap application
204, and local core 303 for download and installation to
device 102.

Local storage 302 may be persistent storage on device
102. That is, when device 102 is shut down or restarted, local
core 303 is persistently stored and not deleted upon shut
down or restart. Local core 303 cannot be modified without
an update through distribution site 106. Additionally, a user
would have to uninstall application 108 to delete local core
303 from local storage 302.

Device 102 also includes a core memory 306 that stores
a remote core that is downloaded from a remote server. Core
memory 306 may be persistent storage that allows the core
stored within core memory 306 to be modified (unlike local
core 303). Although shown separately, core memory 306
may be part of local storage 302. In one embodiment, core
memory 306 is where device 102 stores saved information
for application 108. By using core memory 306 to store a
core, particular embodiments may update application 108.
As discussed above local core 303 cannot be modified
without an update through distribution site 106. However, a
core stored in core memory 306 may be updated or modified.

When application 108 is initially accessed for the first
time, core memory 306 does not include a core. There also
may be other times when core memory 306 does not include
a core, such as when device 102 clears core memory 306.
When core memory 306 does not include a core, device 102
may download an entire remote core from a remote server,
load local core 303 from local storage 302, or load a
combination of local core 303 and the remote core. FIG. 4
depicts an example of requesting a remote core from a
remote server 402 according to one embodiment. A remote
server 402 includes a remote core 403 that includes the latest
updates for application 108. For example, remote core files
404-1-404-7 include updated core files for application 108.
Remote server 402 may be remotely located from device
102 and may be accessed via a wide area network (WAN).
Also, in one embodiment, device 102 does not access remote
server 402 through distribution site 106.

In addition to including remote core 403, remote server
402 includes a manifest 406 that lists the remote core files
404-1-404-7 that are included in the latest remote core 403.
For example, manifest 406 lists remote core files 404-1-
404-n by filename. Manifest 406 may also include param-
eters that uniquely identify each remote core file 404, such
as using a hash of the file contents and a size of the file.

US 9,467,498 B2

7

Manifest 406 may include other information that can be used
to uniquely identify each remote core file 404. Although
manifest 406 is discussed, particular embodiments may not
use manifest at all. For example, bootstrap application 204
may just download all of remote core 403 or send a request
for files in a folder.

To execute application 108, device 102 needs to load core
files for application 108 into memory 412, which may be
random access memory (RAM), cache memory, or other
memory in which applications are executed. To allow for the
most recent application 108 to be used, bootstrap application
204 communicates with remote server 402 to determine if
any updates are available. In this example, device 102 does
not include a core that is stored in core memory 306. In this
case, bootstrap application 204 may load an entire core from
remote server 402 into memory 412, or may load some local
core files 304 into memory 412 and some files from remote
core 403 that are missing from local core 403 into memory
412.

In one embodiment, bootstrap application 204, upon
startup, sends a request to remote server 402 for manifest
406. Remote server 402 then responds to the request by
sending manifest 406 to bootstrap application 204. Once
receiving manifest 406, bootstrap application 204 uses
manifest 406 to determine which core files are present
within core memory 306. In this case, because application
108 is initially being used (or the core memory has been
cleared), core memory 306 does not include any updateable
core files for application 108. Thus, bootstrap application
204 requests each remote core file 404 from remote server
402 and subsequently receives these files. Bootstrap appli-
cation 204 then can store the received remote core files 404
in memory 412. It will be understood that bootstrap appli-
cation 204 may store remote core files 404 in core memory
306 first, and then load the core files from core memory 306
to memory 412. Subsequently, native application 202 can
execute the received remote core files 404 in memory 412 to
provide the media program streaming service.

If the received remote core files 404 have not already been
stored in core memory 306, bootstrap application 204 stores
the received remote core files 404 in core memory 306 as
“updateable core files”. These files are updateable at least in
part because they are not stored as part of the core that was
downloaded from distribution site 106. Also, manifest 406 is
stored in core memory 306 as a stored manifest. The use of
the stored manifest will be described below in case when a
failure of loading a remote core occurs. By storing remote
core files 404 in core memory 306, bootstrap application 204
does not need to load the same remote core files 404 from
remote server 402 upon a subsequent startup. However, if a
remote core file 404 at remote server 402 is updated or a new
remote core file 404 is included in remote core 403, then
bootstrap application 204 updates application 108.

At each startup, bootstrap application 204 may check
remote server 402 to determine if any updates to remote core
403 have been performed. FIG. 5A depicts an example of
performing an update of an updateable core 409 according
to one embodiment. Bootstrap application 204 sends a
request for manifest 406 to remote server 402 as described
above. Remote server 402 then responds with manifest 406,
which represents the latest updates to application 108. FIG.
6 depicts an example of a manifest 600 according to one
embodiment. In a list 602 (e.g., an array), manifest 600 lists
the core files included in the most recent remote core 403.
Manifest 600 lists characteristics for each remote core file
404. The characteristics may uniquely identify a remote core
file 404 such that bootstrap application 204 can determine if

20

25

30

35

40

45

50

55

8

a similar core file is stored in core memory 306. For
example, at 604, characteristics of a remote core file named
“core_6.js” include a hash of the file contents and an overall
size of the file core_6.js. The hash of the contents may
uniquely identify the file core_6.js and the overall size of the
file core_6.js may measure the storage size. Manifest 406
may also include other characteristics that may uniquely
identify the file core_6.js. Manifest 600 further lists similar
characteristics for each remote core file 404 included in
manifest 600. Also, at 606, manifest 600 includes a root
location to download remote core files 404 from.

Referring back to FIG. 5A, bootstrap application 204
checks whether updateable core 409 includes each remote
core file 404 listed in manifest 406. For example, for each
file name shown in list 602, bootstrap application 204 checks
if an updateable core file 410 includes a matching hash in
core memory 306. In one example, core memory 306 may
include an invoice listing 506 that lists the hash and size for
each updateable core file 410. If bootstrap application 204
finds an updateable core file 410 that matches the hash and
size (it should be understood that both the hash and size may
not be used—e.g., just the hash or the size may be used),
then bootstrap application 204 loads the updateable core file
410 into memory 412. If bootstrap application 204 does not
find an updateable version of remote core file 404, then,
bootstrap application 204 sends a request for the missing
remote core file 404 to remote server 402. Remote server
402 sends the requested remote core file 404 to device 102,
and bootstrap application 204 loads the received remote core
file 404 into memory 412. This process continues as boot-
strap application 204 reviews each file in manifest 406 to
make sure every remote core file 404 is loaded into memory
412.

FIG. 5B shows an example of the above update process
according to one embodiment. Core memory 306 includes
updateable core files 410 of files #1, #2, #3, #5, and #6.
However, manifest 406 includes files #1, #2, #3, #4, #5, and
#6. Thus, a new file #4 has been added. Also, file #1 has been
updated and thus the hash for file #1 in remote core 403 does
not match the hash for file #1 in updateable core 409. For
example, bootstrap application 204 detects that the hash for
file #1 in manifest 406 is not included in invoice listing 506.
In light of this, bootstrap application 204 determines that file
#4 and file #1 are missing from core memory 306.

If possible, while the update process is occurring, native
application 202 may still execute application 108 to allow
the user to access the streaming media program service.
Bootstrap application 204 first loads files #2, #3, #5, and #6
from core memory 306 into memory 412. This may allow
native application 202 to execute application 108. However,
in other embodiments, application 108 is updated and then
started.

During the update process, bootstrap application 204
sends a request for file #4. Remote server 402 then retrieves
remote core file #4 and sends that file to device 102.
Bootstrap application 204 then stores remote core file #4
into memory 412. Also, bootstrap application 204 sends a
request for file #1 and receives the file from remote server
402. Bootstrap application 204 also stores remote core file
#1 into memory 412.

When bootstrap application 204 finishes updating,
memory 412 includes core files #1-#6 for application 108.
Once all of the files from manifest 406 have been success-
fully included in memory 412, bootstrap application 204
may verify the loaded core. For example, bootstrap appli-
cation 204 calls a verify function within the loaded core to
have the loaded core verify itself.

US 9,467,498 B2

9

Because application 108 is an interpreted application,
recompilation of application 108 is not needed after the
update process. That is, native application 202 interprets the
core files #1-#6 that are stored in memory 412. Once core
files #1 and #4 are updated and stored in memory 412, native
application 202 can immediately execute them without
requiring recompilation.

When a remote core file 404 is retrieved from remote
server 402, bootstrap application 204 stores the retrieved
remote core file 404 in core memory 306 when it is received.
For example, bootstrap application 204 stores file #4 in core
memory 306. Further, bootstrap application 204 stores any
updated files. For example, bootstrap application 204 stores
the retrieved remote core file #1 in core memory 306. Also,
any updateable core files 410 that were not included in
manifest 406 may be deleted or marked for removal upon the
next removal cycle. For example, the previously updateable
core file #1 is deleted. In one embodiment, bootstrap appli-
cation 204 updates invoice listing 506 with the hash and size
parameters for any new, updated, or deleted core files. In
other embodiments, invoice listing 506 may not be used.
Rather, bootstrap application 204 may store manifest 406 as
stored manifest 408, which may be used at a later time when
a failure occurs when loading any part of remote core 403.

FIG. 5C depicts a simplified flowchart 550 of a method
for updating application 108 according to one embodiment.
At 552, bootstrap application 204 determines characteristics
for a remote core file 404 in manifest 406. At 554, bootstrap
application 204 determines if invoice listing 506 or stored
manifest 408 includes an entry that has the same character-
istics. If not, at 556, bootstrap application 204 sends a
request of the missing remote core file 404 to remote server
402. At 558, bootstrap application 204 receives the missing
remote core file 404. At 560, bootstrap application 204 loads
the received remote core 404 into memory 412. If invoice
listing 506 or stored manifest 408 does include an entry that
has the same parameters, at 562, bootstrap application 204
loads a corresponding updateable core file 410 from core
memory 306 into memory 412. At 564, bootstrap application
204 determines if manifest 406 includes additional remote
core files 404. If so, the process reiterates to 552 where
bootstrap application 204 determines another remote core
file 404. If not, the process ends as device 108 includes every
updated remote core file 410.

As mentioned above, bootstrap application 204 may
encounter a failure when loading a remote core file 410. FIG.
7 depicts a simplified flowchart 700 of a method for loading
updateable core 409 in the event of a failure to load remote
core 403 according to one embodiment. At 702, bootstrap
application 204 attempts to load portions of remote core file
404. For example, the process as described above where
bootstrap application 204 uses manifest 406 to determine
which remote core files 404 to update is performed. At some
point, however, bootstrap application 204 may fail to load a
remote core file 404. For example, a failure may result
because a remote core file 404 could not be downloaded, a
file failed to be included in remote core 403, or a remote core
403 failed verification. At 704, bootstrap application 204
detects the failure. At this point, bootstrap application 204
may not use any portion of remote core 403 due to the
failure. Thus, at 706, bootstrap application 204 clears any
remote core files 404 that were downloaded from memory
412. In other embodiments, bootstrap application 204 may
use some remote core files 404 that were downloaded
already, but may not use the remote core file that resulted in
the failure.

10

15

20

25

30

35

40

45

50

55

60

65

10

At 708, bootstrap application 204 loads stored manifest
408. For example, stored manifest 408 may be a previous
manifest that was retrieved from remote server 402 on a
previous startup. Bootstrap application 204 may verify
stored manifest 408, such as by determining if expiration
criteria for stored manifest 408 indicates the manifest has
expired (i. e., stored manifest 408 is too old to be used).
However, this discussion assumes that the manifest is valid.

At 710, bootstrap application 204 loops through the core
files in stored manifest 408 to confirm that each updateable
core file 410 in stored manifest 408 is included in updateable
core 409. For example, bootstrap application 204 may verify
the hashes and size of the files in stored manifest 408 to
updateable core files 410. At 712, upon verification, boot-
strap application 204 loads updateable core 409 into
memory 412. In this case, any remote core files 404 that
were previously retrieved are not included in the core
included in memory 412. This may be because remote server
402 may be experiencing issues for the fetching of remote
core files 404.

At 714, once all updateable core files 410 have been
loaded into memory 412, bootstrap application 204 verifies
the core has been loaded correctly. At 716, bootstrap appli-
cation 204 may clean up core memory 306. For example,
any updateable core files 410 that were not included in
stored manifest 408 may be removed or marked for removal.
After verification, bootstrap application 204 initializes
execution of the core loaded into memory 412.

In some cases, bootstrap application 204 may need to use
local core 303. For example, core memory 306 may not
include an updateable core 409 or device 102 may not
include a core memory 306. In either case, bootstrap appli-
cation 204 loads local core 303 from local storage 302. This
is the local core that was included with bootstrap application
204 when loaded from distribution site 106. Thus, in light of
any failures with remote core 403 or updateable core 409,
bootstrap application 204 falls back on local core 303.
Unless device 102 does not support a local core, a user
should be able to access the video streaming service.
Although local core 303 may not be the most updated
version of application 108, the user may still be able to
access the service.

Using remote server 402, the media program streaming
service may be able to personalize application 108. FIG. 8
depicts an example of personalization of remote core 403
according to one embodiment. As shown, device 102 may
send identification information to remote server 402. The
identification information may include a user ID for a user
account, platform/device information including what plat-
form it is (e.g., gaming console type), a unique identifier
(e.g., serial #, Media Access Control (MAC) address) for
device 102, or other unique identification information. A
version manager 802 in remote server 402 receives the
identification information and can determine which version
of remote cores 403 to use. For example, different remote
cores 403 may be used for various purposes. In one example,
a user may receive a user-specific remote core 403. This
personalizes application 108 for the user. In this case, the
user provides a user ID that can be used to determine the
user-specific version. Additionally, other personalized uses
may be providing a beta version for testing to specific users,
user-specific testing of a specific remote core 403, or a
phased rollout of a new application 108.

Version manager 802 identifies the remote core version
using the identification information and sends a manifest to
device 102 for that remote core version. Device 102 can then

US 9,467,498 B2

11

use the manifest for the remote core version to request
remote core files 404 from that version.

FIG. 9 depicts a diagrammatic view of an example device
102 according to one embodiment. In selected embodiments,
device 102 may include a processor 902 operatively coupled
to a processor memory 904, which holds binary-coded
functional modules for execution by the processor 902. Such
functional modules may include an operating system 906 for
handling system functions such as input/output and memory
access, a browser 908 for accessing information via the
World Wide Web or similar network infrastructure, a media
player 910 for playing streaming video and communicating
with a streaming video system, and an application 108 for
providing a streaming media program service for videos
being played by the media player 910.

A bus 914 or other communication component may
support communication of information within device 102.
The processor 902 may be a specialized or dedicated micro-
processor configured to perform particular tasks in accor-
dance with the features and aspects disclosed herein by
executing machine-readable software code defining the par-
ticular tasks. Processor memory 904 (e.g., random access
memory (RAM) or other dynamic storage device) may be
connected to the bus 914 or directly to the processor 902,
and store information and instructions to be executed by a
processor 902. The memory 904 may also store temporary
variables or other intermediate information during execution
of such instructions.

A computer-readable medium in a storage device 924 may
be connected to the bus 914 and store static information and
instructions for the processor 902; for example, the storage
device 924 may store the modules 906, 908, 910 and 912
when the device 102 is powered off, from which the modules
may be loaded into the processor memory 904 when the
device 102 is powered up. The storage device 924 may
include a non-transitory computer-readable medium holding
information, instructions, or some combination thereof, for
example instructions that when executed by the processor
902, cause the device 102 to perform one or more operations
of a method as described herein.

A communication interface 916 may also be connected to
the bus 914. The communication interface 916 may provide
or support two-way data communication between the device
102 and one or more external devices, e.g., remote server
402, optionally via a router/modem 926 and a wired or
wireless connection 925. In the alternative, or in addition,
the device 102 may include a transceiver 918 connected to
an antenna 928, through which the client 900 may commu-
nicate wirelessly with a base station for a wireless commu-
nication system or with the router/modem 926.

The device 102 may be connected (e.g., via the bus 914
and graphics processing unit 920) to a display unit 928. A
display 928 may include any suitable configuration for
displaying information to a user of the device 102. For
example, a display 928 may include or utilize a cathode ray
tube (CRT), liquid crystal display (LCD), touchscreen LCD
(e.g., capacitive display), light emitting diode (LED) dis-
play, projector, or other display device to present informa-
tion to a user of the device 102 in a visual display.

One or more input devices 930 (e.g., an alphanumeric
keyboard, microphone, keypad, remote controller, game
controller, camera or camera array) may be connected to the
bus 914 via a user input port 922 to communicate informa-
tion and commands to the device 102. In selected embodi-
ments, and input device 930 may provide or support control
over the positioning of a cursor. Such a cursor control
device, also called a pointing device, may be configured as

5

10

15

20

25

30

35

40

45

50

55

60

65

12

a mouse, a trackball, a track pad, touch screen, gesture
detection systems, cursor direction keys or other device for
receiving or tracking physical movement and translating the
movement into electrical signals indicating cursor move-
ment. The cursor control device may be incorporated into
the display unit 928, for example using a touch sensitive
screen. A cursor control device may communicate direction
information and command selections to the processor 902
and control cursor movement on the display 928. A cursor
control device may have two or more degrees of freedom,
for example allowing the device to specify cursor positions
in a plane or three-dimensional space.

The device 102 may be used to transmit, receive, display,
or the like one or more streaming video segments. In
selected embodiments, such transmitting, receiving, and
displaying may be in response to the processor 902 execut-
ing one or more sequences of one or more instructions
contained in main memory 904. Such instructions may be
read into main memory 904 from another non-transitory
computer-readable medium (e.g., a storage device 924).

Execution of sequences of instructions contained in main
memory 904 may cause a processor 902 to perform one or
more of the procedures or steps described herein. In selected
embodiments, one or more processors 902 in a multi-
processing arrangement may also be employed to execute
sequences of instructions contained in main memory 904.
Alternatively, or in addition thereto, firmware may be used
in place of, or in combination with, software instructions to
implement procedures or steps in accordance with the fea-
tures and aspects disclosed herein. Thus, embodiments in
accordance with the features and aspects disclosed herein
may not be limited to any specific combination of hardware
circuitry and software.

The term “non-transitory computer-readable medium” as
used herein may refer to any medium that participates in
holding instructions for execution by a processor 902, or that
stores data for processing by a computer. Such a medium
may take many forms, including but not limited to, non-
volatile media, volatile media, and temporary storage media
(e.g., cache memory). Non-volatile media may include opti-
cal or magnetic disks, such as a storage device 924. Volatile
media may include dynamic memory, such as main memory
904. Common forms of non-transitory computer-readable
media may include, for example, a hard (magnetic media)
disk, magnetic tape, or any other magnetic medium, a
CD-ROM, DVD, Blu-ray or other optical disc or medium,
RAM, PROM, EPROM, FLASH-EPROM, any other
memory card, chip, or cartridge, or any other memory
medium from which a computer can read.

As used in the description herein and throughout the
claims that follow, “a”, “an”, and “the” includes plural
references unless the context clearly dictates otherwise.
Also, as used in the description herein and throughout the
claims that follow, the meaning of “in” includes “in” and
“on” unless the context clearly dictates otherwise.

The above description illustrates various embodiments
along with examples of how aspects of particular embodi-
ments may be implemented. The above examples and
embodiments should not be deemed to be the only embodi-
ments, and are presented to illustrate the flexibility and
advantages of particular embodiments as defined by the
following claims. Based on the above disclosure and the
following claims, other arrangements, embodiments, imple-
mentations and equivalents may be employed without
departing from the scope hereof as defined by the claims.

US 9,467,498 B2

13
What is claimed is:
1. A method for updating a media program streaming
application for a media program streaming service, the
method comprising:
running, by a computing device, an update application to
determine when the media program streaming applica-
tion on the computing device needs to be updated based
on update information from a remote server;

reviewing, by the update application on the computing
device, the update information to determine when the
media program streaming application needs to be
updated;

when the media program streaming application needs to

be updated, performing:

loading, by the computing device, a set of updateable core

files in a plurality of updateable core files from a core
memory of the computing device into an application
execution memory;

sending, by the computing device, a request for a set of

remote core files to the remote server;

receiving, by the computing device, the set of remote core

files from the remote server;
loading, by the computing device, the set of remote core
files into the application execution memory; and

executing, by the computing device, the set of updateable
core files and the set of remote core files in the
application execution memory without recompilation
of the set of updateable core files or set of remote core
files to provide the streaming media program service on
the media program streaming application.

2. The method of claim 1, further comprising:

when the media program streaming application does not

need to be updated, loading the plurality of updateable
core files from the core memory into the application
execution memory; and

executing the plurality of updateable core files in the

application execution memory to provide the streaming
media program service on the media program stream-
ing application.

3. The method of claim 1, further comprising:

downloading the media program streaming application

including the update application through a distribution
site, wherein the distribution site is a different entity
than the media program streaming service.

4. The method of claim 1, wherein the media program
streaming application is pre-installed on the computing
device.

5. The method of claim 1, wherein the media program
streaming application is a natively run application on the
computing device.

6. The method of claim 1, wherein a remote core file in the
set of remote core files updates a corresponding updateable
core file in the plurality of updateable core files.

7. The method of claim 6, wherein the corresponding
updateable core file is not loaded into the application execu-
tion memory.

8. The method of claim 1, wherein a remote core file in the
set of remote core files is not found in the plurality of
updateable core files.

9. The method of claim 1, further comprising:

receiving a manifest listing a plurality of remote core files

as the update information; and

comparing the plurality of remote core files to the plu-

rality of updateable core files to determine the set of
remote core files to load into the application execution
memory.

5

15

20

25

30

35

40

45

50

55

[
<

65

14

10. The method of claim 9, wherein comparing com-
prises:

for each remote core file in the plurality of remote core

files, performing:

if an updateable core file is present in the core memory

that matches the remote core file, loading the update-
able core file from the core memory into the application
execution memory; and

if no updateable core file from the core memory matches

the remote core file, loading the remote core file into
the application execution memory.

11. The method of claim 9, wherein comparing comprises:

determining characteristics that uniquely identity each of

the set of remote core files; and

determining if updateable core files in core memory

include characteristics that match the characteristics of
the set of remote core files.

12. A non-transitory computer-readable storage medium
containing instructions for updating a media program
streaming application for a media program streaming ser-
vice, the instructions, when executed, control a computer
device to be configured for:

running an update application to determine when the

media program streaming application on the computing
device needs to be updated based on update informa-
tion from a remote server;

reviewing, by the update application, the update informa-

tion to determine when the media program streaming
application needs to be updated;

when the media program streaming application needs to

be updated, performing:

loading a set of updateable core files in a plurality of

updateable core files from a core memory of the
computing device into an application execution
memory;

sending a request for a set of remote core files to the

remote server;

receiving the set of remote core files from the remote

server;

loading the set of remote core files into the application

execution memory; and

executing the set of updateable core files and the set of

remote core files in the application execution memory
without recompilation of the set of updateable core files
or set of remote core files to provide the streaming
media program service on the media program stream-
ing application.

13. The non-transitory computer-readable
medium of claim 12, further configured for:

when the media program streaming application does not

need to be updated, loading the plurality of updateable
core files from the core memory into the application
execution memory; and

executing the plurality of updateable core files in the

application execution memory to provide the streaming
media program service on the media program stream-
ing application.

14. The non-transitory computer-readable
medium of claim 12, further configured for:

downloading the media program streaming application

including the update application through a distribution
site, wherein the distribution site is a different entity
than the media program streaming service.

15. The non-transitory computer-readable storage
medium of claim 12, wherein the media program streaming
application is pre-installed on the computing device.

storage

storage

US 9,467,498 B2

15

16. A method for updating a media program streaming
application for a media program streaming service, the
method comprising:
storing, by a computing device, a plurality of remote core
files for the media program streaming application;

receiving, by the computing device, a request for update
information from an update application running on a
client device, wherein the update application uses the
update information to determine when the media pro-
gram streaming application needs to be updated;

receiving, by the computing device, a request for a set of
remote core files in the plurality of remote core files
from the client device;

sending, by the computing device, the set of remote core

files to the client device, wherein:

the client device loads a set of updateable core files in a

plurality of updateable core files from a core memory
of the computing device into an application execution
memory;

the client device loads the set of remote core files into the

application execution memory; and

the client device executes the set of updateable core files

and the set of remote core files in the application

5

10

15

20

16

execution memory without recompilation of the set of
updateable core files or set of remote core files to
provide the streaming media program service on the
media program streaming application.

17. The method of claim 16, wherein a remote core file in
the set of remote core files updates a corresponding update-
able core file in the plurality of updateable core files.

18. The method of claim 17, wherein the corresponding
updateable core file is not loaded into the application execu-
tion memory.

19. The method of claim 16, wherein a remote core file in
the set of remote core files is not found in the plurality of
updateable core files.

20. The method of claim 16, further comprising:

sending a manifest listing the plurality of remote core files

as the update information to the client device, wherein
the client device compares the plurality of remote core
files to the plurality of updateable core files to deter-
mine the set of remote core files to load into the
application execution memory.

#* #* #* #* #*

